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This thesis presents a family of XY flexure mechanisms with large ranges of motion,
first-order decoupled degrees of freedom, and small parasitic error motions. Synthesis is
based on an systematic and symmetric layout of constraints that are realized by means of
common flexure building blocks. An analytical formulation incorporating geometric non-
linearities is used in deriving the characteristics of these flexure building blocks. Of
concern are issues related to qualification and quantification of undesirable motions,
mobility, stiffness variation within the range of motion, determination of center of
stiffness, and sensitivity to manufacturing and assembly tolerances. Based on the
properties of the building blocks, the performances characteristics of the resulting XY
flexure mechanisms are discussed and the influence of symmetry in reducing error
motions is analytically illustrated.

To verify the design theory, a 300mm x 300mm prototype stage was fabricated,
assembled and tested at the National Institute of Standards and Technology (NIST).
Measurements using laser interferometry, autocollimation and capacitance gauges
indicate levels of performance much better than the capabilities of the current state of the
art of precision flexure stages. The prototype flexure stage has a Smm x 5mm range of
motion, with cross-axis errors of the order of one part in one thousand, and motion stage
yaw errors of the order of a few arc seconds.
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Chapter 1. Introduction

1.1 Flexures

Flexure mechanisms are a designer’s delight. Except for the limits of elasticity, flexures present few other
boundaries as far as applications are concerned. Flexures have been used as bearings to provide smooth
and guided motion, for example in precision motion stages; as springs to provide preload, for example in
the brushes of a DC motor or a camera lens cap; to avoid over-constraint, as in the case of bellows or
helical coupling; as clamping devices, for example, the collet of a lathe; for elastic averaging as in a
windshield wiper; and for energy storage, such as, in a bow or a catapult. This list encompasses
applications related to the transmission of force, displacement as well as energy, thereby making the

versatility of flexures quite evident.

Flexures are compliant structures that rely on material elasticity for their functionality. Motion is
generated due to deformation at the molecular level, which results in two primary characteristics of
flexures — smooth motion and small range of motion. From the perspective of precision machine design,
one may think of flexures as being means for providing constraints. It is this capability of providing
constraints that make flexures a specific subset of springs. In fact, all the applications listed above may be

resolved in terms of constraint design.

The importance of properly constrained design is well known to the engineering community [1-5]. The
objective of an ideal constraining element, mechanism, or device is to provide infinite stiffness and zero
displacements along certain directions, and allow infinite motion and zero stiffness along all other
directions. The directions that are constrained are known as Degrees of Constraint (DOC), whereas the
directions that are unconstrained are referred to as Degrees of Freedom (DOF)'. While designing a
machine or a mechanism so that it has appropriate constraints, the designer faces a choice between
various kinds of constraining elements, two of which are considered in Fig. 1.1 for comparison: ball

bearings and flexures.

Clearly, ball bearings meet the definition of a constraint quite well, since they are very stiff in one
direction, and provide very low resistance to motion in other directions. Nevertheless, motion in the
direction of DOF is associated with undesirable effects such as friction, stiction and backlash, that
typically arise at the interface of two surfaces. These effects are non-deterministic in nature, and limit the

motion quality.

! A more careful definition for DOF and DOC shall be discussed in the subsequent chapters.
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Fig. 1.1 Examples of typical constraint elements

Flexures, on the other hand, allow for very clean and precise motion. Since the displacement in flexures is
an averaged consequence of molecular level deformations, the phenomena of friction, stiction and
backlash are entirely eliminated. The questionable issue here, though, is the effectiveness of flexures in
terms of providing constrained motion. Consider, for example, a thin strip of spring steel, which is a
common flexure element, as illustrated in Fig. 1.1. It is obvious that the steel strip is very stiff in tension,
producing a DOC, and compliant in flexion, resulting in some DOF. Yet, neither is the stiffness along the
DOC infinite, nor is the range of motion along the DOF infinite. Furthermore, the stiffness values along
the Degrees of Freedom and Constraint may vary with load and deformation, which is yet another critical

deviation from ideal constraint behavior.

Thus, there exists a tradeoff between two important attributes in constraint elements — quality of motion
along the DOF and quality of constraint along the DOC. In ball bearings, the quality of the DOC is close
to ideal but the quality of motion along the DOF is compromised. Typically, a motion accuracy better
than 0.1 micron is difficult to achieve [2]. In the case of flexures, while the quality of motion is several
orders of magnitude better, the quality of constraint may be non-ideal. Despite this, there are at least two
reasons that make flexures very desirable as constraint elements in mechanisms where small motion is
acceptable. One, they are elegantly simple in construction and assembly and thus score over options like
air bearings and magnetic bearings. Second, although the constraining effect of a flexure may not be
ideal, it is repeatable and thoroughly predictable. Principles of mechanics provide all the tools that are

necessary to determine the force-displacement characteristics of flexure mechanisms.

In fact, the non-ideal constraint behavior of flexures is not entirely a drawback. Finite stiffness along the

DOF and DOC may be cleverly used to advantage in preloading and elastic averaging, respectively. For
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example, while a multiple parallelogram rigid link mechanism (Fig.1.2a) is prone to over-constraint, a
multi-parallelogram flexure mechanism (Fig. 1.2b) is not only feasible but also results in some

performance improvements.

N~ 00 7

Fig. 1.2 a) Multiple parallelogram linkage mechanism  b) Multiple parallelogram flexure mechanism

In applications such as nanometric positioning, the high quality motion attribute of flexures so strongly
outweighs any limitations that most existing nanopositioners are essentially based on flexures. A further
advantage of using flexures is that the trouble of assembly can be minimized by making the mechanism
monolithic. This makes flexures indispensable for micro-fabrication, where assembly is generally
difficult, or even impossible. Thus, despite small range of motion and a fundamental performance tradeoff

between the DOF and DOC, flexures remain important machine elements.

1.2 Background

Given the wide applicability and advantages of flexures, there exits a considerable amount of design
knowledge on these devices [1-19]. A historical background of flexures is presented in several texts [6-8].
While flexure design has been traditionally based on creative thinking and engineering intuition,
analytical tools can aid the design conception, evaluation and optimization process. Consequently, a

systematic study and modeling of these devices has been an active area of research.

Some of the existing literature deals with precision mechanisms that use flexures as replacements for
conventional hinges, thus eliminating friction and backlash [7-10]. Analysis and synthesis of these
mechanisms is simply an extension of the theory that has already been developed for rigid link
mechanisms, except that in this case the range of motion is typically small. The key aspect of these
mechanisms is flexure hinge design [10-12]. Unlike these cases where compliance in the system is limited

to the hinges, other flexure mechanisms exist in which compliance is distributed over a larger part of the
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entire topology[1-10, 16-19]. Both these kinds of mechanisms offer a rich mine of innovative and elegant

design solutions for a wide range of applications.

Any systematic flexure design exercise has to be based on performance measures. While detailed
performance measures can be laid out depending on specific applications, a general set of measures are

highlighted here. These measures are based on the deviation of flexures from ideal constraints.

One set of important performance measures are the Degrees of Constraint and Freedom of a flexure
mechanism. While Gruebler’s criteria may be used for the constraint analysis of rigid-link mechanisms
connected by flexible hinges [7-9], distributed compliance mechanisms pose significant challenges.
Modifications to Gruebler’s criteria based on a compliance number concept have been made to
encompass compliant mechanisms as well [20-22]. Nevertheless, a generalized definition for DOF and
DOC of a flexure element or mechanism, that addresses issues related to variable stiffness and over-

constraint, is not readily available in the current literature.

Another important performance measure in flexure mechanisms is accuracy of motion. Any deviation
from the intended motion trajectory may be termed as undesired motion or parasitic error motion [1-2,8].
Even though repeatability in flexure mechanisms is guaranteed because of continuum elastic medium,
parasitic error motions affect the motion accuracy. Despite the importance of error motions in
determining the performance of flexure mechanisms, the current literature discusses these terms in the
context of specific mechanisms, and does not provide a broader definition based on qualitative and
quantitative analyses. Typically, designers strive to eliminate or minimize these errors by making

insightful use of geometry and symmetry.

The stiffness values along the DOF and DOC of a flexure mechanism are key dynamic performance
measures while designing a motion system. Apart from damping, which is often added externally, the
stiffness and mass properties of the mechanism determine its dynamic characteristics. While masses
remain constant, stiffness may vary with displacements. In motion control applications, it is important to
exactly characterize this variation in stiffness so that the controller in a feedback scheme may be designed
to be robust against such variations. Such variations in the stiffness are commonly not addressed in
flexure design. While, it may not be obvious immediately, parasitic errors, cross-axis coupling, variation
in stiffness with deformations, DOF and DOC are all very related concepts and cannot be dealt with in

isolation.

As observed earlier, small range of motion is inherent to the nature of flexures. The maximum allowable
range of motion therefore also becomes a key performance metric for a flexure mechanism. Range of

motion depends on static and fatigue failure criteria, all of which are well researched and documented
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[23]. Measures such as sensitivity to thermal disturbances and manufacturing tolerances are also very
important in characterizing the performance of a flexure mechanism, but are generally application

specific.

The above-mentioned static and dynamic performance measures are only some of the most important
considerations in flexure mechanism design. Based on such performance measures, many researchers
have attempted the analysis and synthesis of flexure mechanisms. The biggest tradeoff in any analysis
method is that between the generality of the theory, computational complexity involved, and scope of
results. On one extreme are Finite Elements based methods that can be used for mechanisms of any shape
and size, are computationally intensive, and provide little parametric information. On the other hand are
simplified models, for example, pseudo-rigid-body models [9,16] that involve less computational
complexity, provide parametric performance information, but are limited in their scope of application.
Computationally efficient matrix based methods with macroscopic building blocks also exist for the small
range motion analysis of 3D mechanisms [19]. But in general, analysis is not as big a challenge in flexure

design as is synthesis.

Synthesis boils down to the simple question — how does one create a new flexure mechanism to meet
certain requirements? Because of the vast and open-ended nature of mechanism design space, the answer
remains somewhat elusive. Most designers rely on their intuition and experience for this step. Yet, for the
sake of systematization, mechanism design is generally broken down into three hierarchies, topology
synthesis, shape synthesis and size synthesis [17, 18]. Shape and size, in this context, refer to the shape
and size of individual elements or building blocks that constitute a topology. Given a topology, there are
several deterministic means of achieving shape and size synthesis. For mechanisms with compliance
limited to the hinges, or those which can be approximated using pseudo-rigid-body models, there are
methods of kinematic synthesis [24] and kinetostatic synthesis [14]. For mechanisms with distributed

compliance, advanced methods based on structural optimization exist [25-27].

Topological synthesis of mechanisms has also been attempted based on multi-objective structural
optimization using numerical and analytical techniques [25, 28-30]. While analytically very powerful, it is
seen that these synthesis methods result in a somewhat narrow family of designs, which may be attributed
to the fact that these optimization routines work within a specified design space. Numerical or analytical
optimization is best suited for shape and size synthesis, when a topology already exists. In the true sense
of synthesis, there really does not exist any topological or conceptual design methodology that can
produce the best mechanism that will meet a given set of motion, force or stiffness requirements. A
combination of creative thinking, aided with analytical tools and optimization techniques is probably the

best available recipe for flexure mechanism design.
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1.3 Flexure Mechanisms for Motion Control

One of the primary applications of flexures is in the design of motion stages. A motion system is typically
comprised of some fundamental components — payload stage, payload bearing system, actuator, sensors
and a control strategy. When highly precise motion is desired, each of these components has to be chosen
or designed carefully. Although flexures provide excellent payload bearings in terms of precise motion,
the design of the motion system is not simply limited to the design of the flexure bearing, but has to

encompass all the other components.

Numerous single DOF and multi DOF flexure systems have been presented in the technical literature,
some of which are referenced in [31]. It is generally less difficult to design a single DOF motion system
[32-35] because one does not have to worry about the interaction between the components of the various
axes. Motion, actuation and sensing all take place in one direction only. To achieve large range of motion
and yet high resolution, the use of coarse — fine positioning scheme is common. One can employ a coarse-
fine bearing stage, a coarse-fine actuation system [33], mechanical amplifiers [35-36], and even a coarse-

fine sensor arrangement.

The design of multi DOF motion systems becomes quite challenging, because the interaction between the
components of the various axes in the system results in conflicting requirements being imposed on the
flexure bearing design, as well as on the choice of actuators and sensors. These conflicts in requirements

and their consequences on performance shall be discussed in Chapter 2.

There are two well-known configurations employed in the design of multi DOF flexure bearing stages —
serial kinematics and parallel kinematics. Each configuration has its own set of pros and cons. In serial
design, multiple DOF are achieved by stacking single DOF systems, one on other. The technical literature
presents several such designs, where this stacking is done either out-of-plane [37-39] or in-plane [40-42].
Serial kinematic mechanisms are relatively simple to design, and have substantially decoupled degrees of
freedom, but at the same time incorporate moving actuators and cables that limit the dynamic
performance. Moving cables are sources of disturbance, which is detrimental for nanometric positioning.
Moving actuators, specially when large range of motion is desired, are bulky and reduce the bandwidth of
the axes that carry them. Furthermore, moving actuators and connections are also undesirable for flexure
mechanisms used in MEMS applications due to fabricability reasons. Parallel kinematic designs [43-58]
are free of these problems due to ground mounted actuators, and are also usually more compact, but on
the other hand, provide smaller ranges of motion and exhibit significant cross-axis coupling. Furthermore,
the stiffness of one axis varies with motion or force along the other axes. This affects the static as well as

dynamic performance of the mechanism.
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Most serial and parallel mechanisms do not follow a formal design procedure in their topological
conception. As mentioned already, serial designs are usually constructed by stacking single DOF stages.
Parallel designs, on the other hand, are constructed by adding the necessary number of constraints to
achieve the desired DOF. Such a construction of parallel kinematic mechanisms limits the range of

motion, for reasons explained in Chapter 2. Figures 1.3 and 1.4 illustrate typical examples of each kind.
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Fig.1.3 A Two DOF (X-Y) Serial Mechanism [45]

17



Fig. 1.4 A Three DOF (XY0) Parallel Mechanism [51]

1.4 Contributions

Summarizing the above discussions, the metrics that influence the static and dynamic performance of

flexure mechanisms, and are important considerations in mechanism design, include

a) Range of motion and failure limits

b) Degrees of Freedom, Degrees of Constraint and over-constraint

¢) Undesirable motions including parasitic errors and cross-axis coupling errors

d) Variation in stiffness along DOF and DOC due to a forces and/or displacements
e) Thermal sensitivity

f) Manufacturing sensitivity
If designed for motion control, some other factors that are of concern are

g) Hysteresis and creep
h) Choice of sensors and actuators
i) Damping of critical vibration modes

j) Choice of control strategy

These performance measures and design considerations shall be explained in more detail in the

subsequent chapters, and it will also become apparent that several tradeoffs exist between these factors.
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As indicated earlier, existing flexure mechanism design approaches fall under two distinct categories.
There is a traditional approach that is based on creative thinking and intuition. While this approach has
resulted in several new topologies, it has earned the reputation of being a black art. Due to the lack of an
analytical basis and a systematic approach, only a percentage of the designs that are thus conceived have
acceptable performance. On the other hand, there are approaches that have a mathematical foundation, but
allow for little creative inputs from the designer, resulting in few new designs. If one thinks about the
problem in terms of genetics, the first approach is an analog of mutation, whereas the latter approach
loosely represents cross-over. While each method has its strengths, by themselves they have proved to be

inadequate in terms of being able to address the concerns listed above.

This thesis strives to bridge the gap between intuition and mathematical analysis in flexure mechanism
design. Based on an understanding of the challenges involved in multi DOF flexure mechanism design, it
proposes several new XY mechanisms with large ranges of motion, and provides a performance
evaluation of each variant. This thesis also presents simple analytical tools that aid the intuition of a
design engineer — tools that can be used to quickly and accurately estimate the stiffness of a mechanism in
various directions, that can help identify over-constraining arrangements, that can be used to estimate
error motions in a mechanism, validate the role of symmetry in design, and at the same time provide

parametric understanding of the design space.

Arguments based on intuition and symmetry can indeed be used in many a cases to answer performance
related questions without resorting to analysis. This is illustrated in Fig 1.5 by posing the following
simple question — Where should a transverse load be applied to a uniform beam so as to produce zero
rotation between the two ends? Rigid extension arms are attached to the two ends of the beam so that
both transverse forces and moments may be applied without having to show the moments explicitly. The

forces applied on each arm need to balance out and therefore are equal and opposite.

Intuition tells us that the transverse force should be applied at the mid-span of the beam to ensure zero
slope between the two ends. This intuition is not baseless and is easily validated by symmetry arguments.
Referring to Fig. 1.5B, where the load has been applied along the mid-line, consider a hypothetical
deformed configuration of the beam such that the relative angle between the ends is not zero. Now flip
this picture about Axis 1, to obtain the picture of Fig. 1.5C, and then once again about Axis 2 to obtain the
picture shown in Fig 1.5D. Comparing figures 1.5B and 1.5D, one can see that the geometry and the
loading are identical. Therefore, by symmetry the deformations in two cases also have to be identical.
Clearly, this will not be the case if there is a relative rotation between the two ends, and the only
deformation that satisfies the requirements of symmetry is one in which the two ends remain parallel.

Thus, we see that only a load applied along the mid-line will produce a zero slope.
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Fig. 1.5 Arguments of symmetry applied to a uniform beam

In fact, a symmetric S-shaped deformation with zero relative angle between the ends, passes the above
test of symmetry. We are thus able to obtain an answer to our original question without involving the
principles of solid mechanics, except force equilibrium, and irrespective of the constitutive properties of
the material. Several variations of such symmetry based arguments may be used in many cases to obtain

useful performance information. But as one adds further complexity to the problem, for example, apply an
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axial load in the current case, the scenario changes. In the deformed configuration, one now has to add an

additional moment due to the axial load, to satisfy force equilibrium. This additional moment results in a

loss of loading symmetry, and the above arguments are no longer valid. It therefore becomes impossible

to qualitatively determine the line of transverse force application that will produce a zero end slope.

Thus, we see that intuition is powerful and helps in design decisions, but only up to a certain extent,

beyond which complexity in the system takes over. In such situations, mathematical analysis becomes a

handy tool. The above example illustrates that both intuition as well as analysis are indispensable for

design, and reflects the general flavor of this thesis.

Accordingly, the following list highlights the specific contributions of this thesis.

1)

2)

3)

Several new parallel kinematic XY flexure mechanism designs are proposed based on a systematic
and symmetric arrangement of flexure units, as opposed to the current methods of synthesis. This
approach allows us to create flexure mechanisms in a deterministic fashion, and at the same time
achieve impressive performance measures in terms of range of motion, cross-axis coupling and
parasitic errors. Chapter 2 presents the XY mechanism designs, while Appendix A illustrates several

other multiple DOF mechanisms.

A non-linear static analysis is presented to evaluate the proposed XY mechanism designs. The force-
displacement characteristics of various flexure units are quantified, with specific consideration to the
coupling effects between the displacements and forces along various directions. Chapters 3 presents
the non-linear analysis of a uniform beam flexure, and based on several insightful engineering
approximations, concludes with simplified symbolic results. These results allow us to analytically
consider the concepts of mobility, error motions, variation in stiffness, center of stiffness, sensitivity
to geometry and assembly, and generalization to other shapes. The application and limitations of

energy principles in this context are also briefly discussed.

Chapter 4 provides a similar analysis for two other common flexure units, namely, the parallelogram
and double parallelogram flexures. In Chapter 5, some of the mechanism designs from Chapter 2 are

comparatively evaluated for their performance.

The fabrication, assembly and experimental test step-up of an XY flexure stage, chosen on the basis
of the above synthesis and analysis exercise, is presented in Chapter 6. Issues related to choice of
material, manufacturing process, sensors and actuators are discussed. The experimental set-up is
designed to be modular so that it can accommodate multiple sensors and actuators. A preliminary
comparison is made between the two potential fabrication techniques: water-jet cutting and electric

discharge machining. To achieve an assembly that is free of friction and backlash, a new clamping
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mechanism that effectively holds the cylindrical actuator and cap-probes has been invented. In the
design of the metrology set-up, a classic alignment problem has been revisited and is discussed in

detail.

A comprehensive measurement and characterization of the XY stage that has been performed, and is
presented in Chapter 7. Impressive performance results have been obtained, that match the analytical
predictions. The prototype XY mechanism has an overall size of 300mm x 300mm x 25mm, and
provides a 5Smm x Smm range of motion. Over this range of motion, cross axes errors of less than 1
part in 1000, and parasitic motion stage yaw of less than 3 arc seconds are recorded. A simple motion
control design, which incorporates a closed-loop coarse actuator and open-loop fine actuator has been
implemented to achieve Snm positioning accuracy, which is currently limited by the resolution of the

laser interferometer transducer.

There are several areas directly related to this work presented in this thesis that offer much scope for

future work. These topics are briefly listed here.

1)

2)

3)

4)

Given the XY Flexure mechanism designs, a thorough dynamic system analysis and controls design
is necessary to achieve motion control over a large bandwidth. The passive dynamics of the system in
terms of its natural frequencies, mode shapes, and internal resonance conditions need to be
analytically and experimentally determined. The problem of colocated and non-colocated controls in
the presence of a variable drive stiffness needs to be addressed. Passive damping strategies that can
provide dissipation over large frequency ranges are desirable. Hysteresis and creep associated with

piezo-actuators commonly used in micro/nanopositioners need to be addressed.

Performance sensitivity to geometry and manufacturing/assembly tolerances is an important aspect of

flexure mechanism design that needs further work.

This thesis deals with the generation of new topologies and resulting performance based on a standard
blade flexure based building blocks. Size and shape optimization that allow for variations in the beam

geometry, are the next steps in fine-tuning a given XY mechanism to tailor it for specific applications.

While the thermocentricity of some of the XY mechanisms has been empirically suggested, a
thorough thermal analysis and subsequent validating experiments are desirable to check the

sensitivity of the mechanisms to thermal disturbances.

In Appendix A, several other flexure mechanism designs are also presented that were conceived during

this research. Although not thoroughly analyzed, these designs embody the concepts and philosophy

followed in the rest of this thesis.
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Chapter 2. Synthesis of Parallel Kinematic XY Flexure

Mechanisms

2.1 Design Requirements and Challenges

Compact XY flexure stages that allow for large ranges of motion are desirable in several applications
such as semiconductor mask and wafer alignment [54-55], scanning interferometry and atomic force
microscopy [39,48,59], micromanipulation and microassembly [60], single molecule experiments in
physics and biology [61], high-density memory storage [62] and MEMS sensors [63] and actuators [41].
Since most of these applications require nanometer or even sub-nanometer positioning, flexure-based
motion stages are the only bearing choice available [64]. But the limitation of existing XY flexure stages
is their relatively small range of motion. Although magnetic and air bearings may be used to achieve large
range high precision motion [2], these are not ideally suited for nanometric positioning because of their
size. In some cases large range single DOF flexure stages have been designed [35-36], but large range XY

flexure stages are rare in the current technical literature.

There are three relevant length dimensions: size of stage, maximum range of motion, and motion
resolution. In this discussion, the ratio between range of motion and stage size is referred to as the specific
range, and the ratio between the range of motion and the motion resolution is referred to as the dynamic
range. In the applications above, high specific as well as dynamic ranges are desirable. The dynamic
range of a precision milling machine axis [range ~ 0.5m, resolution ~ Sum], and a motorized precision
micrometer driven stage [range ~ 10mm, resolution ~ 0.1 um] is of the order of le-5. While similar
dynamic ranges are easily achievable in flexure stages, typical specific range of most designs is only

about le-3 [54].

Large specific and dynamic range flexure stages are difficult to find because this range of motion
requirement imposes several challenges on the design of the overall system, including the sensors,
actuators and the flexure mechanism itself. Not only is it difficult to achieve a large specific range using
flexure bearings, it is also very difficult to obtain sensors and actuators that have large dynamic ranges. In
XY stages, the interaction between three physical components along with the control system, influences
the design and choice of each, thereby further restricting the overall system design. Stage size, motion

range and resolution depend on all of the motion system components.
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This chapter addresses the issues related to designing an XY flexure stage that has a large specific range,
given the constraints imposed by the overall motion system. Choice of sensors and actuators is addressed

in Chapter 6, and control system design is briefly touched upon in Chapter 7.

As mentioned earlier, there are two kinds of design configurations — serial and parallel designs. Both
these configurations present difficulties in meeting the large range motion objective. Since a serial
configuration can be built by assembling single DOF systems, it may appear that this arrangement is
better suited for large range multi-DOF mechanisms. In fact almost all macro-scale machines and
metrology tools are built this way, for example, the milling machine and the coordinate measuring
machine. But neither of these machines are designed either for high dynamic performance such as
scanning, nor for nanometer resolution. Since actuators that can generate large motions are usually bulky,
moving actuators become very undesirable for dynamic performance, and moving cables are sources of
disturbance that are detrimental for high resolutions. Ground mounted actuators are therefore much
preferred, but the existing parallel mechanisms provide a small specific range, unsuitable for the
applications stated above. To understand the challenges in designing a flexure mechanism in a parallel

configuration, a typical example is considered.

The conventional approach in a parallel mechanism design is to add the necessary number of constraints
so as to achieve the desired degrees of freedom. This approach highlights the limitations imposed by
parallel geometry and the other components of the motion system in the design of the flexure stage. If one
desires an XYO mechanism, for example, a common solution is to support a payload stage on three
slender beams, as shown in Fig 2.1. This way, the three out of plane degrees of freedom are suppressed,
and the payload stage is constrained to move within the XY plane. Several XY and XYO flexure designs
that exist in the literature are conceptually identical to this [48,51-56]. It should be mentioned that a
fourth beam can also be added without resulting in an over-constraint, which is an advantage of flexures
over rigid link mechanisms. If designed for motion control, this configuration of Fig. 2.1 results in the

following tradeoffs.
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Fig. 2.1 Typical parallel kinematic XY 0 flexure mechanism

Large range of motion requires that the beams be made as thin as possible, which in turn reduces
the stiffness in the out-of-plane DOC directions. This is the classic tradeoff between the DOF and
DOC - to increase the range of motion in DOF one ends up compromising the stiffness along
DOC. This lowers the payload carrying capacity and stiffness associated with the out-of-plane
motion. This limitation is a direct consequence of the fact the flexures are non-ideal constraining
devices because their stiffness in various directions cannot be independently assigned. Due to the
finite stiffness along DOC, flexure mechanisms are more tolerant to misalignments arising from
fabrication and assembly, which is why a fourth beam may be added in this case to bolster the
DOC stiffness without causing an overconstraint. But this strategy still doesn’t provide an

independent control over DOF and DOC.

Ideally, no motion is desirable in the DOC direction. In this particular arrangement, there is an
undesired error motion in the out of plane directions associated with in-plane motion. Once again,
this is due to the imperfect nature of beam flexures. Furthermore, the undesired error motion
often has a higher order non-linear dependence on the primary motion, and therefore increases
very fast with increasing ranges of motion. This problem, of course, is resolved if the constraints

are designed to be in-plane [54-56].
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3. One of the most critical challenges is that of integrating the actuators with the motion stage. In
this particular case, three independent forces are to be applied on the motion stage to actuate X, Y
and 0. Force source actuators that do not require a physical interface, for example direct acting
magnetic coil actuators, do not pose a problem in terms of integration. But these are unsuitable
for large range of motion applications because of the low forces that they generate, the non-linear
dependence of magnetic force with displacement, and loss in axial force due to transverse
displacements [65]. Displacement source actuators, like motor driven micrometers or piezo-
actuators, generate a much larger force but require a physical attachment between the actuator tip
and the stage. Piezo-actuators do not allow for a large range of motion, and are either used for
fine positioning in a coarse-fine scheme or in conjunction with a motion amplifiers [35-36].
Displacement source actuators have a preferred direction of motion, referred to as the axial
direction, and are typically not designed to support transverse loads [66]. Referring to Fig. 2.2, a
maximum displacement x, of the motion stage in X direction results in the same amount of
transverse displacement at the Y actuator tip. This shows that the actuators can’t be rigidly
connected to the motion stage and that a decoupler, for example a wobble pin or a double hour

glasses flexure, is necessary.

The purpose of the decoupler is to transmit the axial force and absorb the transverse motion,
without generating any transverse loads. This idealization, once again, is an unachievable if one
uses a flexure-based decoupler to retain the high motion resolution. By making the flexure
decoupler compliant in the transverse direction, one ends ups compromising the axial direction
stiffness as well. This in turn results in lost motion {8] and reduced dynamic performance as
described in point 5 below. Thus, the range of the motion system is not limited by the failure
limits of the flexure bearing stage itself, but is restricted to a much smaller level by the maximum
transverse displacements that the decoupler allows without generating large enough transverse

forces that will damage the actuator.

4. Tt is desirable to use non-contact sensors for the stage motion measurements, so as to avoid any
sources of disturbance at the stage. A motion range of 5Smm and resolution of 0.5nm results in a
desired dynamic range of at least Ie-7. The choice of sensors becomes a difficult task because
until recently such large dynamic range non-contact sensors that are practical, have not existed.
LVDTs that do have a satisfactory dynamic range require the motion stage to move along a
straight line, which is not possible in an XY stage. Laser interferometry which also has a high
dynamic ranges is suitable only for testing and characterization but is an impractical option for

regular operation due to the bulky size, high costs and the set-up required. Capacitance probes do
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provide high sensitivity and resolution but have a relatively poor dynamic range of the order of
le-5, for a given size. Linear scales also have the necessary range and resolution, and provide
non-contact sensing, but are typically single axis sensors, and tolerate little off axis motions. Only
recently, two-axis optical scales have become commercially available [67], and constitute one of

the few options that are suitable for large range of motion flexure mechanisms.

The compliance of the components that lie between the actuator and the stage, for example, the
decoupler, is important from a feedback control perspective. As illustrated in Fig. 2.2, a motion in
X direction produces a transverse displacement at the Y decoupler. The axial stiffness of the
decoupler flexure typically drops non-linearly with an a transverse displacement. Thus the
dynamic characteristics of the Y axis become critically dependent on the X axis motion. Since the
actuation and the point of interest are non-colocated, the inline stiffness between these two points
plays very important role in determining the dynamic performance of the system, and any
damping as well as controls strategy has to be robust against this variation in stiffness and
corresponding natural frequencies. Clearly, this problem gets more severe with increasing ranges

of motion.
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It should be noted that for applications other than motion control, where integration with sensors and
actuators is not required, for example in decouplers, probes, and certain sensors, it suffices for the motion
stage to simply have the necessary degrees of freedom, and the existing designs are perfectly suitable. But
for the purpose of motion control, constraints in the flexure bearing design should be chosen a bit more

carefully, so that some of the challenges listed above can be mitigated.

So we see that neither the traditional approach of Fig. 2.1, nor the computational topology synthesis
methods mention in Chapter 1, have so far produced parallel mechanism topologies that meet our stated
requirements. Based on an understanding of the limitations and tradeoffs that we have identified in the
current designs, we start approaching the problem from alternate paths. Rather than an ad hoc
arrangement of constraints, we seek those arrangements that will help up mitigate the challenges that are

laid out above. Such an arrangement should meet the following specific requirements.
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In most applications that we are trying to address, the primary positioning objective is in X and
Y, and that motion stage yaw is undesirable. Given this requirement, motion stage yaw, €, may be
rejected passively or actively. Either the mechanism should be designed using appropriate flexure
units such that the motion stage rotation is constrained to levels below the maximum acceptable
yaw errors, or a third motion axis should be incorporated to actively measure and cancel the yaw
errors. There are advantages as well as challenges associated with each technique. As explained
earlier, adding a yaw control axis in the traditional parallel format can limit an otherwise large X
and Y range of motion. Adding yaw control in the serial format will once again result in moving
actuators and cables, although the requirements on this actuator will be less stringent because
only small motion is needed to correct for 8 From a dynamics point of view, adding a yaw
control axis will also help actively reject any yaw vibrations resulting from ambient excitations or
disturbances. But this issue may also be addressed passively by means of appropriate vibration
isolation and damping design. In general, at both the MEMS scale and the macro scale it is very
desirable to keep the number of actuators and sensors, and therefore the number of axes as low as
possible. For these reasons, we choose the former approach where yaw motion of the stage is

constrained and any observed @will be treated as parasitic error motion.

It is desirable to minimize the cross-axis coupling between the two degrees of freedom.
Specifically, the motion along Y direction in response to a force or displacement along the X
direction should be ideally zero, and vice versa. In the absence of an end-point feedback, if one
relies on sensors that measure the actuator displacements, a calibration step, either analytical or
experimental, is needed to determine the coordinate transformation matrix between the actuator
coordinates and the motion stage coordinates. This typically limits the positioning accuracy of the
motion stage if there are uncertainties involved in the actuator. In some micro scale applications,
an experimental calibration may not even be possible, thereby making it very desirable to
eliminate cross-axis coupling. Cross-axis coupling also plays a very important role in determining
the dynamic characteristics of the flexure system, because an excitation in one direction can
generate vibrations in the other direction, resulting in conditions of parametric excitation and
internal resonance. In applications other than motion control when the two axes are not actively
controlled, for example in some MEMS sensors [63], this effect is one of the primary
performance metrics. In the presence of end-point feedback, and independent actuators, the effect
of cross-axis coupling on static and dynamic is far less detrimental. A more mathematical

definition of the cross-axes coupling error discussed here shall be provided in Chapter 3.
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It is also desirable to minimize the lost motion between the actuator and the motion stage, for
similar reasons as stated above. Otherwise, a calibration step is needed to map the displacements
of the actuator to that of the motion stage. Furthermore, eliminating lost motion alleviates the
need for end-point sensing, which can be difficult to achieve due space and packaging
restrictions. For example, in MEMS scale applications, where all components of the system need
be in the same plane for ease of fabrication, end-point sensing may be difficult or even
impossible. The importance of the stiffness between the actuator and motion in determining

dynamic performance has already been highlighted earlier.

Furthermore, the application point of the X actuation force should not be affected by any
displacement of the motion stage in the Y direction, and vice versa, an attribute which we term as
actuator isolation. This is different from the cross-axis coupling error discussed above. The lack
of any transverse displacements at the Y actuation point, in response to an X actuation force,
mitigates the dependence on the decoupler. While, the decoupler may still be needed to
accommodate assembly and manufacturing misalignments, it can be designed to be much stiffer
in the transverse direction, and therefore the axial direction, because it no longer limits the range
of motion of the mechanism. As explained earlier, the stiffer the decoupler is axially, the better is
the dynamic performance of the system. By the same token, in response to a Y force, the point of
Y actuation itself should move in the Y direction only, and should not have any transverse
motions. These requirements ensure the reliable functioning of the actuators by minimizing

transverse loads.

A Y displacement of the Y actuation point in response to an X force is also generally not
desirable because this generates an additional axial force at the Y actuator. But usually this is not
as several problem because both the actuator and the mechanism are designed to handle axial
loads. The implicit assumption in all this discussion is that the actuators are axial, which is

reasonable.

For obvious reasons, low thermal and manufacturing sensitivity are desirable for the XY flexure
mechanisms discussed here, and both these factors are strongly dependent on the mechanism

geometry.

Since the primary objective of the XY mechanisms is to provide guided motion along the X and
Y directions, and constrain all other motions, it is desirable to maintain the high stiffness and
small parasitic errors in the three out of plane directions. In other words, the Degrees of

Constraints should be as close to ideal as possible.
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Based on an understanding of the challenges posed by flexures in general and the parallel configuration in
particular, fundamental design principles [67], intuitive reasoning, and analytical insight, we propose a set
of flexure mechanism topologies that meet the above requirements. These proposed designs deviate from
the traditional approaches, mentioned earlier, in that they make unique use of known flexural units and
geometric symmetry to minimize cross-axis coupling, parasitic yaw of the motion stage, and at the same
time maximize actuator isolation. Towards the end of this chapter, a means for modifying these designs is

also presented, which allows for out-of-plane motion, in addition to the in-plane translations.

2.2 Proposed Design Principle for a Two Axis Flexure Mechanism

In this entire document, X and Y are defined to be the in-plane axes and Z, the out of plane axis. Fig. 2.3
shows the arrangement of rigid and compliant units of which the proposed flexural mechanism must be
composed. There are four rigid stages: ground, motion stage, and two intermediate stages. The motion
stage should have two translational degrees of freedom with respect to ground. The intermediate stages
are necessary to decouple the motion of the two axes and isolate the actuators that control these two axes.
Since the ground mounted actuators cannot be directly connected to the motion stage, the intermediate

stages provide the points for actuator force application.

In the rest of this thesis, we shall use the term flexure unit to represent building blocks that constitute a
flexure mechanism. The rigid stages in Fig. 2.3 are connected to each other by means of flexure units,
which act as frictionless bearings or guides and provide constraints to relative motion. Each of the flexure
units A, B, C and D is a single degree of freedom mechanism that only allows translation in the direction
shown by the double-sided arrow. The fixed stage is connected to Intermediate Stage 1 by means of
Flexure A, which only allows for relative motion along the X direction and constrains all other the other
degrees of freedom. This implies that no matter what the overall configuration of the entire mechanism is,

Intermediate Stage 1 will always have a pure X displacement with respect to ground.

Intermediate Stage 1 and the Motion Stage are connected by means of Flexure B that allows for relative
motion in the Y direction only and constrains relative motion along X direction and rotation. This implies
that the X motion of Intermediate Stage 1 will be entirely transmitted to the Motion Stage, while any Y
motion of the Motion Stage will not influence the Intermediate Stage 1 at all. Thus, Intermediate Stage 1
becomes an ideal location for the application of the X actuation force. Flexure A provides the linear
guide/bearing for X actuator force. Furthermore, any X force applied at Intermediate Stage 1 is incapable

of producing any Y motion of the Motion Stage due to the presence of Flexure B.

31



Intermediate
Stage 1 Motion

/\4 ﬁ Q Stage

Flexure A Flexure B
Flexure C

Intermediate
Stage 2

Flexure D
X

YL T T e G e b f i G 2

Ground:
Fixed Stage

Al T T I I I i ey
<

N

Figure 2.3 XY Flexure Mechanism Topology

On very similar lines, Intermediate Stage 2 is connected to ground by means of Flexure D, which
constrains motion in X direction and rotation, but allows for perfect relative motion in the Y direction.
Thus, Intermediate Stage 2 can only move along Y and shall have no motion in the X direction or
rotation, no matter what the displacement of the Motion Stage is. Intermediate Stage 2 and the Motion
Stage are connected via Flexure C, which allows only X motion between the two. Thus, any X motion at
the Motion Stage will not affect the Intermediate Stage 2, which is therefore an ideal location for the
application of Y actuation force. At the same time, all the Y motion that is generated at Intermediate
Stage 2 due to the Y actuation force will be transmitted to Motion Stage, but is incapable of producing

any X motion of the Motion Stage due to the presence of Flexure C.

Ideally, in any deformed configuration of the flexural mechanism, Intermediate Stagel always has a pure

X displacement while Intermediate Stage 2 has a pure Y displacement. The Motion Stage inherits the X
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displacement of Intermediate Stage 1 and the Y displacement of Intermediate Stage 2, thus acquiring two
translational degrees of freedom. Since all the connecting flexure units constrain rotation, the rotation of

the Motion Stage is also constrained with respect to ground.

This is an idealized scenario, where units A, B, C and D are perfect single degree of freedom flexure
bearings or guides. The only degree of freedom that flexures A and C allow for is relative translation
along X, while Flexures B and D are compliant only in relative translation along Y. We know that in
reality, such flexure units do not exist. Any flexure unit will have only a finite compliance and range of
motion along its DOF, and a finite stiffness along its DOC. As a consequence of this fact, the zero
parasitic error, zero cross-axis coupling and perfect actuator isolation conclusions obtained above shall be
compromised, the extent of which depends on the flexure building block that is chosen. Nevertheless, we
can certainly say the conclusions shall hold good at a gross or first-order level, and the undesirable

interactions and deviations from ideal behavior will be higher order in nature.

Flexures are chosen for the bearing units A, B, C and D, instead of ball bearing based guides, which
would have allowed for much larger ranges of motion, One reason for this decision is to achieve high
motion resolution and smoothness, as explained in Chapter 1. But this is not the only reason; there is
another fundamental reason why only a flexure based mechanism can work effectively in this
configuration. Let us consider a rigid body version of the arrangement shown in Fig. 2.3. As earlier, if we
have an ideal frictionless linear bearing as shown in Fig. 2.4a, we can go ahead and assemble four such
units in the fashion proposed above, to obtain the mechanism of Fig. 2.4b, and expect that that we have
attained the zero error two axis mechanism. But that is not the case. Even if we ignore the concerns of
motion quality, there is a mobility problem with the mechanism shown in Fig 2.4b. Applying Grubler’s
criteria to this mechanism, one obtains a DOF of one, as opposed to an expected value of two. Indeed, in a
general configuration this mechanism has only one degree of freedom, but in the special case when
Bearings A and C are aligned perfectly parallel, and bearings B and D are aligned perfectly parallel, one
constraint becomes redundant and the mechanism exhibits two degrees of freedom. The result of
Grubler’s analysis simply indicates that any deviation from this perfect alignment will lead to a reduction
in Degrees of Freedom which shall be manifested by jamming or locking of one axis. Since the
constituent bearings are perfect constraints with infinite stiffness along their DOCs, any misalignment
will produce infinitely high locking forces. Thus we see that even if we had perfect single DOF building
blocks or constraints, we would need an absolutely perfect manufacturing and assembly to make the

above idea work. But, as is well known, this is not possible in real life.
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Figure 2.4 XY Linkage Mechanism Topology

The beauty of designing with flexures is that, while flexures can be blamed for being imperfect
constraints and therefore producing an XY mechanism that is error prone, it is precisely this imperfection
of flexures that makes the above arrangement realizable in the first place. Furthermore, any deviation

from ideal behavior of the XY mechanism is exactly predictable using the principles of mechanics.

The level of manufacturing tolerances that are acceptable for the proposed XY mechanism topology to
function as desired, depends on the constituent flexure units, and may be estimated using the analytical

tools that shall be developed in the subsequent chapters.

This is a simple, maybe somewhat obvious, yet fundamental guideline that can be used in designing high
performance planer two-axis flexural mechanisms. Any linear motion flexure unit, which in the
designer’s opinion comes close to the stated idealizations, can be used as a building block to produce a
two DOF planer mechanism. The following sections present designs generated with three types of flexure
units or building blocks: the simple beam flexure, the parallelogram flexure and the compound or double

parallelogram flexure.
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2.3 XY Flexure Mechanism based on the simple Beam Flexure

Although a simple beam is not a very good single degree of freedom flexure unit, nevertheless due to its
simplicity it may be used as a building block in the arrangement discussed in the previous section. From
beam bending analysis we know that the beam tip translates (8) as well as rotates () when it experiences

a transverse force. Furthermore, it also exhibits a parasitic error motion in the X direction (g).

7

——7),

__.|'<_ X

€ Y
Fig. 2.5 Simple Beam

Using the beam flexure for flexure units A, B, C and D, the resulting two axis mechanism is illustrated in
Fig. 2.6. This is a moderately reasonable design in terms of performance and may be used where accuracy
can be compromised but space is at a premium. In-plane rotation of motion stage may be minimized by
appropriate placement of actuation forces. Clearly, an X actuation force will produce a small
displacement of the Motion Stage in Y direction as well, and vice versa, and therefore cross-axis coupling
is present. The point of application of X actuation force on Intermediate Stage 1 also moves in the Y
direction. Furthermore, an application of Y force moves the point of application of the X force. Hence,
actuator isolation is not achieved either. Out of plane stiffness is low because of the overhanging motion

stage.
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This relatively poor performance may be improved by making an insightful use of geometric symmetry
where the design is mirrored about a diagonal axis, as shown in Fig. 2.7. The constraint pattern remains
the same and the mechanism still has two in-plane translational degrees of freedom, once again due to the
finite stiffness of flexures along their DOC. Primes denote the mirrored flexure units. On careful
inspection, one can see that symmetry brings about some improvements in the performance of the XY
mechanism. On the application of an X actuation force, the two sides of the mechanism tend to produce
displacement of the motion stage in Y direction that oppose each other, and therefore cancel out. Out of
plane stiffness is now better owing to an improved structural loop, since the motion stage in this design is
supported from two sides. The design still suffers from lack of good actuator isolation. Also, there is no
significant improvements in the parasitic yaw of the motion stage. Thus, we conclude that symmetry in
this case may help in terms of some performance measures but doesn’t bring about much improvements

in others.
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24 XY Flexurev Mechanism based on the Parallelogram Flexure

The parallelogram flexure unit is a classic design that has been employed in many flexural mechanisms.
Fig. 2.8 provides a schematic of the flexure in its deformed and undeformed configurations. Beam
bending analysis can be used to predict the force-deformation characteristics of this flexure. It can be
analytically shown that parallelogram flexure offers small resistance to relative motion in the Y direction
but is stiff with respect to relative motion in X and rotation. Hence, it is a much better approximation for a

single DOF flexure as compared to the simple beam flexure used in the previous case.

37



b - - - —— -

DNMMINN
-~

/

Figure 2.8 Conventional Parallelogram Flexure

However, the parallelogram flexure unit also suffers from undesirable parasitic errors. An application of
force in the Y direction results in the desired motion 9§, in Y direction, and also in undesired motions: € in
the negative X direction, and rotational twist 6. While 6 may be eliminated by appropriate placement of

the force F, € is always present [1-2,8].

Following the design principle expounded earlier in this document, we come up with a two-axis planer
flexure mechanism design, shown in Fig. 2.9, in which the parallelogram flexure is used for Flexure Units
A, B, C and D. This is a better design in terms of performance as compared to the one illustrated in Fig.
2.6. The accuracy is better but nevertheless undesired motions still exist. In-plane rotation of the Motion
Stage in constrained quite well because the parallelogram flexure unit is considerably stiff in rotation. An
X actuation force still produces a small displacement of the Motion Stage in the Y direction, and vice
versa. The point of application of X actuation force also moves slightly in the Y direction during force
application. Furthermore, an application of X force moves the point of application of the Y force. Hence
perfect actuator isolation is not achieved in this case either. Since the motion stage is supported only from

one side, out of plane stiffness is also relatively low.
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Some of the above performance measures are improved, once again, by exploiting geometric symmetry as
shown in Fig. 2.10. Due to their finite stiffness, the additional flexure units do not over-constrain the
mechanism. This symmetric arrangement should result in several performance improvements. The motion
stage yaw should be further reduced to due to the additional rotational constraints arising from the
parallelogram flexures. On the application of an X actuation force, the two sides of the mechanism tend to
produce displacements in Y direction that counter each other, and therefore reduce the cross-axis coupling
errors. Out of plane stiffness also improves due to better support of the motion stage. Perfect actuator

isolation is still not achieved in this design.
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Before proceeding to the next building block, we would like to point out that new features may be added
to this design, which enhance its functionality. For example, small horizontal blades may be introduced in
the mechanism in a manner as shown in Figure 2.11. The vertical blades belong to the original two-axis
flexural mechanism design and the horizontal blades are new additions that now enable out of plane
motion as well. By appropriately positioning these horizontal blades each of the intermediate stages, and

the motion stage can be imparted with a Z degree of freedom.
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Figure 2.11 Combination of vertical and horizontal blades provides in-plane and out-of-plane motion

By choosing actuator forces as shown in Figure 2.12, we can add another three out-of-plane degrees of
freedom to the planer mechanism: translation of the Motion Stage along Z, and its rotations about the X
and Y axes. If we choose to apply a Z direction force only on the Motion Stage, we obtain a three DOF

mechanism with compliance in X, Y and Z directions.

Normal forces Fy,; and Fy,; acting on opposite intermediate stages result in rotation of the Motion Stage
about the X-axis and similarly forces Fy,; and F,,, produce a rotation about the Y axis. A combination of
these four vertical forces can be used to generate any arbitrary motion along Z and angular twists about X
and Y, adding three DOF. Once again, this could not have been possible in a rigid link mechanism, and is

achievable only because we are using flexures.
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Figure 2.12 XYZ 6,6, Design 1

We can thus get five degrees of freedom from a planer flexure. The three newly added degrees of freedom
fall in the traditional parallel kinematic topology category. Consequently, actuator isolation is poor for the
out-of-plane actuators. Any out-of-plane motion of the intermediate stage causes the point of application
of the in-plane forces to move. Similarly, any in-plane motion will cause the points of application of the

normal forces to shift.

It is may be noticed that many of the anomalies of this design and the XY design of Fig. 2.10 are a
consequence of using the parallelogram flexure unit, which has some inherent error motions. We

therefore shift attention to other potential flexure units.

2.5 XY Flexure Mechanism based on the Double Parallelogram Flexure

Next, we use the double parallelogram flexure unit, shown in Fig. 2.13, as the building block for two-axis
planer flexural mechanisms. In some of the technical literature this flexure unit is also referred to as a

compound parallelogram flexure, folded-beam flexure or crab-leg flexure.
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Analysis shows that this flexure allows relative Y translation between bodies A and B, but is stiff in
relative X displacement and rotation, although not as stiff as the parallelogram flexure. The parasitic error
€, along X direction, is considerably smaller because any length contraction due to beam deformation is
absorbed by a secondary motion stage. There does exist a rotational parasitic motion, which may be
eliminated by appropriate location of the Y direction force. Hence, body A exhibits perfect Y-translation
with respect to body B on the application of a Y direction force. These statements are true only in the

absence of X direction forces.
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This time, the double parallelogram may be employed to construct XY mechanisms as shown in Fig 2.14.
In these cases, cross axis coupling and motion stage yaw should be small and actuator isolation should

also be better than previous designs. Further improvements may be obtained by mirroring the design as

shown in Fig. 2.15.

Intermediate

Intermediate
Stage 1

Figure 2. 15 XY Design 6: ‘Biflex’
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Apart from enhancement in the performance measures, the out-of-plane stiffness is also significantly
improved because the motion stage is supported from all sides. More importantly, symmetry should make
the design more robust against manufacturing variations and assembly errors. Furthermore, the double
parallelogram flexure is fairly insensitive to uniform thermal disturbances, because the change in the
beam lengths due to thermal disturbances is readily absorbed by the secondary motion stage. Based on
this argument, one may conclude that the XY Mechanism Designs generated from the double
parallelogram flexure are also better suited to reject any thermal variations. Furthermore, the XY Design
of Figure 2.15, which we refer to as the ‘Biflex’, also allows for better space utilization and therefore has

better specific range.

We can now impart out-of-plane motion to the planer mechanism by introducing horizontal blades in
some of the double-parallelogram units, as shown in Figure 2.16. Horizontal blades are added such that
the intermediate stages themselves do not have any significant Z motion. The secondary motion stages of
the double-parallelogram flexures, the motion of which is inconsequential, are the ones that attain out of

plane motion.

Intermediate
Stage

Secondary

Motion Stage - Vertical Blades

Horizontal
Blades

Figure 2.16 Vertical and horizontal blades produce in-plane and out-of-plane motion

Referring to Figure 2.17, by applying normal actuator forces, we can add another three out-of-plane
degrees of freedom to the planer mechanism: translation of the Motion Stage along Z, and its rotations
about X and Y axes. We may also choose to apply a single Z direction force on the Motion Stage, to

obtain a three DOF mechanism with compliance in X, Y and Z directions.
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Normal forces F,,; and Fy,; result in a rotation of the motion stage about the X-axis and similarly forces
F,,: and F,,; produce a rotation about the Y-axis. A combination of these four vertical forces can be used
to generate any arbitrary motion along Z and angular twists about X and Y. It is important to observe that
the normal forces are not applied on the intermediate stages; rather, they are applied on the secondary
motion stages of the four double-parallelogram flexure units that support the Motion Stage. This isolates
the normal forces from the in-plane forces to some extent. The affect of normal forces on the points of
application of in-plane forces, is far less severe, thus improving actuator isolation. Furthermore, the out-

of-plane rotations are much better decoupled as compared to the design of Fig. 2.12

Figure 2.17 XYZ6.6, Design 2: ‘Pentaflex’

It may be noticed that while the XY design of Fig. 2.15 is rotationally symmetric, it lacks in symmetry
about any axis in the XY plane. While it is yet to be seen if this has any significant effect on the

performance, a yet another topology with even higher degree of symmetry is illustrated in Fig. 2.16. The

evolution from XY Design 6 to XY Design 7 should be obvious.
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With smaller beams lengths in the constituent double parallelograms, this mechanism will have a smaller
specific range. With respect to all other performance measures, like cross-axis coupling error, parasitic
yaw error, out of plane stiffness, and actuator isolation, this appears to be better than the previous designs.
Also, because of the increased number of flexures, elastic averaging will play an increasingly important

role in making the design more tolerant to manufacturing variations. Such conjectures need to be verified

Zm -
L
Vo) Vo)

Fig. 2.16 XY Design 7

by means of the analytical tools that shall be presented in the subsequent chapters.




Of course, several other XY designs can be generated based on the construction of Fig. 2.3. Any flexure
unit that produces error-free single axis translation can be used as a building block for two-axis planer
mechanisms. For example, the multiple beam parallelogram flexure, shown in Fig. 1.2b, is a promising
candidate. Adding further beams to the conventional parallelogram flexure, increases the stiffness in the
DOC and DOF in the same proportion. This is better than simply increasing the thickness of beams in a
parallelogram flexure, which increases the DOF by a cubic factor. Multiple beams may be used in a
parallelogram arrangement, without resulting in an overconstraint, because of the phenomenon of elastic
averaging. Furthermore, a combination of different flexures units can also be used in constructing the XY
mechanism. For example, one may use double-parallelogram units for Flexures A and D, and
parallelogram units for Flexures B and C. Of course the suitability of one design over the other depends

entirely on the requirements of an application.

Based on the challenges and trade-offs associated with parallel kinematic flexures, it appears that
designing a large range of motion XY0 mechanism is no simple task. One may attempt this by extending
the ideas presented here to a third in-plane axis. In fact, a three dimensional XYZ flexure mechanism,
which allows for ground mounted actuators and large ranges of motion along its three substantially
decoupled DOF, is proposed in Appendix A. But for the purpose of this thesis, we shall limit ourselves to

XY planer mechanisms only.

In this chapter, we have proposed several XY flexure designs based on simple flexure units. In general,
these mechanisms have a large range of motion because they avoid some of the limitations the arise in the
conventional parallel mechanism designs. While we have made qualitative estimates about the advantages
and disadvantages of each embodiment, the exact performance of these designs, including the range of
motion prediction, remains to be evaluated analytically and experimentally. It has also become clear that
not only the transverse, but also the axial stiffness properties of a flexure unit are very important. In
parallel kinematic mechanisms such as the ones proposed here, each flexure unit or building block
performs two distinct functions — that of providing DOF along one direction, and DOC along other
directions. Therefore, the force displacement relationship of the flexure unit along each direction, and
more importantly its dependence on the forces and displacements in other directions, plays a key role in
determining the performance attributes such as variation in stiffness, cross-axes coupling, parasitic errors

and actuator isolation, of the overall flexure mechanism.

With this understanding, we proceed to Chapters 3 and 4, which present these force-displacement
relationships in a parametric form. These results then allow us to deterministically evaluate the

performance of the designs proposed here, which is done in Chapter 5.
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Chapter 3. Static Non-Linear Beam Bending Analysis

In this chapter we revisit non-linear beam bending analysis, with the objective of understanding the basic
attributes of flexure units. The reason for choosing a uniform beam is that it is one of the most common
flexure elements, and at the same time is simple enough to allow for closed-form analysis. Based on the
results of this analysis, we seek insights into the nature of concepts such as Degrees of Freedom, parasitic
error, over-constraint and stiffness variation with displacements. Once this is done, we shall have the tools
and terminology to investigate other more complex flexure elements and mechanisms. While thermal
effects can play an important role in the performance of flexures, we limit our present analysis to only the
structural aspects. Furthermore, although an explicit dynamic analysis is not performed at this stage, some
key conclusions pertaining to the dynamic performance may be obtained from the results of the static

analysis.

All the attributes and performance measures of interest, as outlined in Chapters 1 and 2, can be derieved
from the force displacement characteristics of a given flexure unit. Therefore, based on the principles of
solid mechanics, we proceed to analyze these characteristics for the simple beam flexure. A typical

formulation in mechanics consists of three components [69-70]

a) Constitutive relationships
b) Force equilibrium or force compatibility relationships

c) Geometric equilibrium or geometric compatibility relationships

All three of the above relationships determine the overall nature of a problem, for example, whether the
formulation will be linear or non-linear. Non-linearity in a formulation may be a consequence of either of

the above.

At the macro scale, constitutive relationships relate loads to deformations. For an infinitesimally small
differential element, these relationships relate the stresses to strain, and are dependent on the material

properties.

Force equilibrium is commonly applied to a loaded elastic body in its undeformed configuration, but in
reality, forces are truly in equilibrium only in the deformed configuration. Since the deformations are
small, it is usually assumed that force equilibrium equations will not be affected significantly irrespective
of whether they are applied in the deformed or undeformed configuration. While this a reasonable
assumption for many cases, there are other situations where force equilibrium in the system is critically

dependent on the deformation that results from the forces on the system, for example, during a transverse
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displacement of a string under tension. It is important to realize that, in such situations, even though force
equilibrium conditions may include the non-linearities arising from displacement variables, these

equations are necessarily linear in the load terms, as required by Newton’s Laws.

Furthermore, systems obey certain geometric constraints which results in the conditions of geometric
compatibility or geometric equilibrium. In almost all cases, geometric compatibility is a purely kinematic
relationship, often non-linear in the displacement variables, but independent of loads. But this should not
be mistaken for a rule. Although uncommon, there are cases, where geometric compatibility becomes
dependent on the loading. Such a situation, and its consequence on the elastic analysis, is discussed later

in this chapter.

A given mechanics problem may be approached by explicitly solving the equations resulting from all
three of the above relationships simultaneously. This involves the internal forces and displacements,
which may not be of interest as far as the final results are concerned. Energy methods arising from the
Principles of Virtual Work and Complimentary Virtual work offer a computationally efficient, and
mathematically elegant alternative to the former approach. While all analysis in this chapter is done using
the former approach, a discussion on the applicability and use of energy methods in this context is

presented towards the end.

Finally, to be able to employ the principles of mechanics to achieve relationships that are useful for
flexure design, and at the same time are accurate enough, several carefully justified engineering
approximation need to made. One of the key steps in this analysis is recognizing what effects are
important and what are not. This is achieved by making use of engineering judgment, mathematical

insight and non-dimensional analysis.

3.1 Beam Bending Analysis

Classical beam bending analysis is commonly found in several undergraduate and advanced texts [69-71].
These derivations are based on a formulation that is attributed to Jacob Bernoulli and Leonard Euler [72].
Although the final results of Bernoulli’s original analysis are known to be erroneous, the basic
assumptions that he made are very powerful and hence constitute the starting point in classical beam

bending theory.

Since we would like to study secondary effects resulting from axial forces in a beam, it is important to
verify the validity of Bernoulli’s assumptions. Fundamentally, these assumptions are based on arguments
of symmetry. One can imagine an infinitely long slender beam with a uniform rectangular cross-section

subjected to a pure bending moment. Consider a finite length segment of this beam centered about axis O-
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O, in an undeformed and a deformed configuration, shown in Figures 3.1A and 3.1B, respectively. At this

stage, no assumptions are made regarding either the height or depth of the beam.

>

1
A (1 C
A, A

N
iy

Fig.3.1 Infinite beam under pure moment load

Now let us reason what happens to a cross-section plane A-A that is initially aligned along the O-O axis
in the undeformed beam. After deformation, the section A-A can assume one of several possible
configurations for example, A;, A, or As. It is easily seen from Fig. 3.1B that the loading and the
geometry of the beam are perfectly symmetrical about the O-O axis. Therefore, if one flips the beam
about the O-O axis, since the loading and external geometry of the beam remain unchanged, all the beam
cross-sections in their deformed configuration should appear as though nothing changed. This argument
rules out all possibilities like A, and A;. The only post deformation configuration of A-A that withstands
the above requirements of symmetry is A;. Based on this simple mental experiment, one can make two

conclusions,
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a) Plane sections remain plane after deformation

b) Plane sections remain normal to the top and bottom faces of the beam after deformation

The above set of arguments, and therefore the resulting conclusions, do not change if one chooses a
different cross-section, as along as it is uniform and symmetric. More importantly, the presence of a

uniform axial force along the beam doesn’t affect these conclusions either.

For practical reasons, beams are not infinite. But a slender beam with a height much smaller in
comparison to the length, is a close approximation. In this case, from the point of view of a cross-section
in the beam, which is far away from either end, the beam appears almost infinite. The above arguments
also assume that moment is constant along the length of the beam, which is clearly not the case when a
shear force is present. Since shear forces break the loading symmetry, one would doubt the above
conclusions. But once again, for small beam heights, variations in moment over the length of the beam do
not appear very significant, and these conclusions may still be used as very good engineering
approximations. In fact, finite element analysis and experimental evidence corroborates the validity of

these approximations.

As the beam height is increased, one may no longer be able to treat the beam as being infinitely long, and
therefore the approximations start to fail, and plane sections no longer remain plane. In this case, pursuing
beam bending analysis based on Bernoulli’s assumptions results in the contradictory situation where shear
strains are zero, while the shear stresses are finite and large. This anomaly is elegantly resolved in
Timoshenko’s beam bending theory [71]. Although, physically less intuitive, Timoshenko’s formulation

provides a more accurate representation of non-slender beams, owing to its mathematical rigor.

Typically for flexure elements the height is kept significantly smaller than the length, and therefore
Bernoulli’s assumptions hold. Furthermore, even when the cross-sections warp, the final results of the
classical beam bending theory stay valid as long as the axial and the shear forces remain constant [70],

which is often the case.

Euler further made the assumption that apart from being thin in the Y direction, the beam is also thin in
the Z direction. This then allows for a plane stress assumption in the XY and XZ planes. Commonly, in
the case of flexures, a relatively large Z dimension is used to limit motion to the XY plane. In that case, it
can be shown that the strains in the Z direction are negligibly small, resulting in plane strain in the XY
plane, while the XZ plane still remains in plane stress. Thus, depending upon the Z dimension of the
beam, the XY plane will either be in a state of plane stress or plane strain. For either case, the analysis
that follows is straight forward. We simply state the final result, which applies at every cross-section of

the beam, and is commonly known as Euler’s formula.
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where,

M is the moment at a given cross-section in the beam, / is the second moment of area about the Z axis, p
is the radius of curvature, and
E=E if Plane Stress

=E */ 1-v? if Plane Strain, and

E" and v are the Young’s modulus and Poisson’s ratio of the material, respectively.

As we proceed through this analysis, there are several approximations that we will need to make, and
these are appropriately justified wherever mentioned. To be able to make any decisions regarding
dropping of terms, we should have an idea of the maximum amount of motion and forces that may be
applied to the flexure beam. Since, parallelogram and double parallelogram flexures are the most
frequently used flexure units in this thesis, and since the beams that constitute these units have an
approximately S-shape deformation, we shall use the S-shape deformation to make some preliminary

estimates.

%
_

Fig 3.2 A beam deformed in S-shape

A beam experiences an S-shape deformation for the loading conditions shown in Fig 3.2. For this zero

end slope condition, it can be shown that the buckling load of the beam is given by

m’El  PI?
_ 3 = —=
L EI

where all the quantities have standard meanings. As part of a parallel kinematic flexure the beam will

P= -’ =-9.87

transmit tensile as well as compressive loads. Hence we shall only be interested in axial loads that are

within the buckling limit. Furthermore, the flexure units will transmit axial as well as transverse loads.
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For a symmetric and balanced mechanism, the order of these loads will be approximately the same.
Therefore, we shall use the limit determined above for the transverse loads F as well.
Using the maximum shear stress yield criteria, for example, one can show that the maximum allowable tip

displacement is given by

4) 15
L)  3nE
where T denotes the beam thickness, S, is the material yield strength, and 7 is a chosen factor of safety.

For flexures, L/T ratios of 50 are common, and S,/E ratios range from 4e-3 for AL-6061 to /e-2 for TI-13.

3.2)

N~

The safety factor 77 may be chosen on the basis of stress concentration in the geometry. For typical values,
the maximum deformation 4, ranges from 0.05L to 0.1L. We will aim to obtain results for deformations
as large as 0.1L, but in practice the deformations are kept well within this number, especially if fatigue

loading is considered.

Based on (3.2), it is useful to keep in mind that in designs where the maximum motion is dictated by the
static yield criteria, the normalized maximum motion A/L is inversely proportional to the normalized

blade thickness 77/L.

Now consider a Bernoulli beam in Fig. 3.3 with a set of generalized forces F, M and P acting at its tip,
representing transverse, moment and axial loads, respectively. The resulting displacements are 4,, 4, and
6. All forces and displacements are expressed in a reference frame that is aligned with the undeformed
configuration of the beam. The constitutive relation for an X differential element of the beam is given by
Euler’s formula (3.1). The macroscopic geometric compatibility can be stated as an expression for the

beam curvature at any given location X along the beam length.

1__ Y (3.3)

o (I+Y7)"

The denominator in the above term makes the resulting differential equation non-linear, and requires the
use of elliptical integrals for a closed-form solution [73-75]. The result of this non-linear formulation is
too complex to be of use for the closed-form analysis of more complex flexure mechanisms. Instead of
trying to work with the elliptical integrals, we consider the often made assumption of small slopes. For an
S-shape deformation if the tip deflection is 0.1L, then the maximum slope that exists in the beam is 0.15,
which occurs at the mid-length. Therefore, the maximum error in approximating the denominator by I is
about 3.4 percent. To meet the objective of obtaining parametric results, we decide to accommodate this

€ITor.
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Fig 3.3 Beam with a generalized end load

In the next step, all displacements and length parameters are normalized by the beam length L, and all

forces are normalized by EI/L?.
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In the rest of this thesis, we follow the notation of representing all non-dimensionalized quantities by

lower case alphabets, whereas their corresponding dimensional parameters are denoted in upper case.
The condition of force equilibrium when determined from the undeformed configuration results in,
MX)=M+F(L-X)=>m(x)=m+ f(I1-x) 34

Equations (3.1)-(3.4) can be solved simultaneously to determine displacements in terms of loads or vice-

versa. The results of this straightforward exercise are stated in a non-dimensionalized form.
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Expression (3.6) is obtained by carrying out an integral of the beam arc length, and setting it equal to the
undeformed length plus the elastic stretch. The resulting expression for o, is comprised of two very
independent components, a kinematic term and an elastic term. While the elastic term depends on the
applied axial force, and vanishes when the axial force becomes zero, the kinematic term has a quadratic
dependence on the transverse displacements. Although the kinematic term expression may be rewritten in
terms of transverse loads instead of transverse displacements, resulting in a non-linear force displacement
characteristic, it is emphasized that this is fundamentally a relationship between geometric parameters,

arising from the condition of geometric constraint on the arc length.

Note that the non-dimensionalized axial force p does not appear in the force-displacement relationships in
the transverse directions (3.5). Furthermore, the relations (3.6) does not provide any information about the
change in the axial stiffness in the presence of a transverse force or displacements. Such interdependence
is of key concern in designing parallel kinematic mechanisms, as has been explained earlier. This linear
analysis is good for displacements of the order of 0.1, as long the axial force p, which was neglected in
the force equilibrium relation, is small. The obvious questions that arise are: How small should p be for
the expressions (3.5) and (3.6) to be effective? How are &, and & affected by the presence of an axial load
p? To obtain answers to these questions, we next perform a non-linear beam bending analysis based on

force equilibrium conditions applied in the deformed configuration.

M(X)=M+F(L+A4,-X)-P(4,-Y) 3.7

Equations(3.1), (3.3) and (3.7) together yield
EIY' =M +F(L+4, -X)-P(4,-Y)= y'=m+ f(1+6, —x)—p(é'y -y)

which upon double differentiation leads to
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yiv — pyl: yiv ___ka’ =0 , p é k2 (3.8)
p may be positive or negative, resulting in a real or imaginary k, respectively. Both these situations are
easily dealt with. The general solution to this equation is,

y= c,ek" + cze"“ +c3x+cy

Constants c; through ¢, can be determined using the boundary conditions. Depending on whether we want
to obtain forces in terms of displacements or displacements in terms of forces, we can use either of two

sets of boundary conditions

Set A or SetB

y=0 @x=0 y=0 @x=0
y'=0 @x=0 y'=0 @x=0
y’:m @x:] y=5y @x=1
yi==f+py @x=1I y =tanf @ x=1I

At this point, we introduce two other approximations. tané can be approximated by &, since for the
maximum slope of 0.15 that the beam sees, & value is 0.149, which is less than I percent error.
Furthermore, although the boundary conditions should be applied in the deformed configuration, that is,

at x=1+0,, this is of very small consequence for the pertinent calculation. In an S shape deflection, for

a & of 0.1, 6, will be approximately 0.006, which can be dropped out in comparison to / in the above

boundary conditions.

Using the first set of boundary conditions, we obtain
o = 1 m f e*
e kT K

. = 1 _r{1_+fek
e KK

3 =f/k2 and c¢,=-¢, ¢,

With these values and some amount of mathematical manipulation, the end displacement of the beam can

be shown to be,

k —tanhk coshk -1
o, =1 (S5 Jem( o)

K k?coshk

, 3.9
coshk -1 tanh k

0=fl— +m
_k“coshk k
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If one employed the second set of boundary conditions, the values for the constants ¢, through ¢, are,
_ k(e =DA, +(e* +k-1)@
k[ k(e* —e™)~2(e* +e7™) +4]
k(e* —DA, - (e —k-1)0
C) =—
Ck[k(eF—e®) =20t +e )+ 4]

c; =k(c,—¢y)

Y

Given the following relationships for end loads,

f==y"(D+py')
m=y"(I)

one can deduce,

fe k’sinhk 5+ k*(I1-coshk)
ksinhk —2coshk+2 ’ ksinhk —2coshk +2

e k?(I—coshk) S+ k? coshk —ksinhk
ksinhk —2coshk+2 7 ksinhk —2coshk +2

(3.10)

Expressions analogous to (3.9) and (3.10) may be obtained similarly for compressive axial load, i.e.,
negative values of p. The results are obtained in terms of trigonometric functions rather than hyperbolic

functions.

The next step in this derivation is to apply the constraint condition on the arc length of the beam in its
deformed configuration, so as to determine J; . As earlier, the displacement &, can be resolved into two
components — a kinematic component that results from the constant arc length requirement, and a purely

elastic component that results due to elastic stretching.
8. =088+4° (3.11)

The elastic component may be expressed as,

2 2
o; = where d=£=12(£) =g (3.12)
1 T t

SHIS)

The kinematic component is derived by performing an integration on differential arc elements.

ds=(1+y’2)%dxz(1+%y'2)dx
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Clearly, in the above expression, we cannot simply neglect the y’ term as was done earlier, or else we
shall not be able to obtain a difference between the integral of ds and dx. We do however make a different
assumption this time, by retaining up to the second order term in the Binomial expansion of the ds
expression. The subsequent term is fourth order and for a maximum y’ of 0.15, this term is approximately

Se-4, and is therefore neglected.

1465 1467
I ds = I (I+%y'2)dx
’ ’ 1+0,

I+§;=(I+5x)+%jy'2dx = §f=—%jy'2dx
0 0

We also note that the upper limit of integration has been changed in the last integral expression, on the
basis that the small difference in the integral limit will not change the integral significantly. The length
term appears in the integral appear in powers of three and higher, and since &, is approximately 0.006 for
a maximum tip displacement of 0.1 for a beam in an S-shape deflection, it reasonable to neglect the &,

with respect to the 1 that appears in the integral limit.

For the sake of mathematical convenience, this time we use an alternate expression for y, in terms of
hyperbolic functions instead of exponentials. For this solution to be valid, we have to explicitly assume

that the axial force is tensile. For compressive loads an analogous analysis can be conducted.

y =c;coshkx+c,sinhkx +c;x+c,
¥’ =¢; ksinhkx+c, kcoshkx +c;

Applying the boundary conditions,

@x=0 @x=1
y=0=>c¢,+¢,=0 y=A, =c¢,coshk +c,sinhk+c; +¢c, =0
Y =0=ck+c; =0 ¥y =0 = cksinhk +c,kcoshk +c; =0

one may solve for the unknown constants in the solution, and subsequently for y’.

k —sinhk

ol 7 coshk —1 T Ay

¢, | ksinhk —2coshk+2 . coshk—-11| &
—sinhk ——M8—

€y =6
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¥ =¢; ksinhkx +c, k(coshkx—1)
sinh? kx sinhkx (coshkx — 1)][c,}

ylZ — k2 [cl . ,
sinhkx (coshkx —1) (coshkx—1)

¢

1 1

1 j sinh? kx dx j sinhkx (coshkx — 1) dx
Jylzdx=k2[cz e] ] ’ ’ 1

0 j sinhkx (coshkx —I) dx j (coshkx — I)?dx
0 0

k [ (coshksinhk —k) (cosh? k —2coshk + 1) ¢
= [Cz c2]

2 _(cosh2 k—2coshk+1) (coshksinhk—4sinhk +3k) | C2

Ultimately, one can obtain

8 =-[s, 0]['“ r”][‘;y} (.13)

Ly
where,

_ k?(cosh? k +coshk — 2) — 3sinhk(coshk — I)

g 2(ksinhk — 2coshk +2)°
S __kz(coshk — D +k sinhk (coshk —1) —-24(coshk —-1)?
4(ksinhk —2coshk +2)
= —k* + k? sinhk(coshk +2) — 2k (2cosh? k —coshk —I) +2sinhk (coshk — 1)

4k (ksinhk — 2coshk +2)°

As earlier, & may be stated in terms of the transverse loads instead of displacements, but it should be
recognized that this is fundamentally an equation of geometric constraint — that the beam maintains a
constant arc length. It may be may be noticed that this condition of geometric constraint is explicitly
dependent on a load in the form of k. As indicated earlier, such situations are fairly uncommon. It will be

shortly seen that this load dependence is very weak, nevertheless, it existence is of much importance.

The final results of this derivation are the five equations (3.9)-(3.13) relating five displacement variables -
6, 6, &, S, 8¢, and three load terms f, m, and p. The last three equations may be combined to result in an
overall three equations, and six variables. Given any three, the remaining three can be found. These

results match with similar analysis that has been done in the past [76].
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Based on the approximations made so far, these results should err by no more 3-4 % in predicting the true
behavior of an ideal beam. It is noteworthy that in the above analysis, we have ignored the non-linearity
in the geometric compatibility conditions but have incorporated the non-linearity from the force
equilibrium equation. This judgment is based on the fact that, while the former approximation results in a
few percent error in the displacement estimates, ignoring the non-linearities in the force equilibrium
results in the loss of some fundamental physical effects that dictate the performance of flexures.
Furthermore, it will be seen in the next section that the transcendental expressions (3.9) and (3.10),
resulting from the force equilibrium non-linearity, can be readily simplified to obtain useful parametric

information. Similar simplifications are difficult to obtain for elliptical integrals.

3.2 Engineering Approximations and Simplified Results

Several interesting observations can be made from the expressions stated above. For example, the end
displacements y and & are not uniquely related to the end loads f and m. For any given loads, f and m, the
displacements, y and €, can take a different set of values depending on the magnitude of k, or the axial
load p. But given the transcendental nature of the above expressions, it is almost impossible for a design
engineer to draw any parametric conclusions. We therefore proceed to make another set of engineering
approximations, the most important so far, in an attempt to obtain expressions that offer better insight into

the force displacement characteristics of the flexure beam.

We start with the simplification of the compliance terms in Equation (3.9). An obvious first guess to

expand the hyperbolic expression in form of an infinite series and then use the first few terms.
(k—-tanhk) [coshk—])
B k’ k? coshk
(coshk—]] (tanhk
k*coshk k

(1—31«2 +£k4 ——6—2—k6...
5 105 945
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Fig 3.4 Approximation of the Compliance term c;,

Simply taking the first few terms from the expansion series turns out to be a very poor approximation as
is seen in the Fig. 3.4. Instead we look for other simple functions that may approximate the transcendental

function. The following turns out be a good fit.
k—tamhk} 1(1—0.41(2 +0.1619k* —0.0656K°...)
K 3
_-1_2—— zi(z —0.4k* +0.1600k* —-0.0640k6...)
31+ Ekz)

Since the series expansion coefficients for the two functions are very close up to several higher order
terms, the expression in the second line above seems to be a very good approximation. This becomes

evident from Fig.3.5 where the two functions are plotted for values of p (2 k%) up to 10. At this value of

p, the error in approximation is 2.6%. Mathematically speaking, this excellent match is purely a

coincidence.
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Fig 3.5 Approximation of the Compliance term c;

Similar approximations may be obtained for the other compliance terms.

. =(coshk—1)z 1 = !

12 =€ %2 coshk 2(1_'_%](2) 2(1‘*‘%1’)
. =(tanhka 1 = !
2Tk )T e %0) (145057
. =(tanhk)z (1+1L0p)

2 k (1+% p+55p°)

These approximate functions are plotted in Figures 3.6 and 3.7 respectively, along with the exact
functions. Since these are not series based approximations, p does not have to be small for the
approximations to hold. While the approximation for ¢;; and c¢;; is good for values of p up to 10, the
approximation for c;; is not as accurate. In fact, simply an inverse linear term results in an inadequate
match in this case, and therefore a quadratic term is also included, which improves the approximation for
values of p up to 5. A combination of linear and inverse quadratic function, shown above, may also be

used to get an even better approximation.
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The fact that some compliance terms can be approximated by inverse linear functions of p, provides an
indication that stiffness functions may be approximated by linear functions of p. That indeed is the case,
and therefore approximations to the stiffness terms are obtained simply from the Taylor series expansion

of the actual hyperbolic stiffness functions.

&’ sinhk k?(1-coshk)
K= ksinhk —2coshk+2 ksinhk—-2coshk +2
k?(1-coshk) k?coshk — ksinhk

ksinhk —2coshk +2 ksinhk—2coshk +2

The following series expansions show that for the range of our interest, the coefficients of the higher

order terms are small enough to be neglected.

- k’ sinhk
Ik sinhk — 2coshk + 2
_ K’(I-coshk)
227 ksinhk — 2coshk + 2
k?coshk —ksinhk
= =4(1+Lk? -2 k*.)=4(1+4
2~ L sinhk — 2coshk + 2 (14354 ~slik.) =4(1+ % p)

= 12(1+5k? —ghsk*..) = 12(1+ p)

~—6(1+5k* —ghsk* ) =—6(1+ 2 p)

The first two simplifications above result in errors of less than I percent, and the third simplification
deviates from the exact expression by less than 3 percent. But the advantage of these simplifications are
far-fetched in terms of revealing the key attributes of the beam flexure, and producing valuable closed-
form results. Although the above approximations are obtained for tensile axial loads, the approximations
can be shown to be valid for compressive axial loads as well. It can also be shown that the product of the
approximate stiffness matrix and the approximate compliance matrix, both restated below, is very close to

the unity matrix.

1 1
5 3(1+%p) 2(1+%p) ¥
Y= (3.14)
[9] 1 (I+4p) [m]

2(1+55p) (1+4p+4p°)

[f}:[”(”#l’) ‘6(“%1’)}[(&] (3.15)

m] |-6(1+%p) 4(1+4p) |L€

Luckily, simple linear approximations are also available for the coefficients in the geometric constraint
relation (3.13). It may be seen that the coefficients have an approximately linear dependence on p, and

that this dependence is very weak.
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6}’
i (3.16)

It is therefore tempting to neglect the dependence of the coefficients on the axial loads. But it shall soon
become clear that that these terms play a critical role in determining the characteristics of the beam in

particular, and flexures in general.

Based on the recent approximations, the force-displacement relations for a blade can be stated as follows.

My e 50

§x=§p+[5y 0][1'; ﬂ[iy]w[&y 0][; ﬂ[é] (3.18)

These are three equations and six unknowns — three loads and three displacements. Given any three, the
remaining can now be easily solved analytically for most cases. The coefficients a, b, ¢, d, e, g, h, i, j, k, q,

r and s are all non-dimensional numbers and are characteristic of the uniform cross-section thin beam.

12 e 1.2 i |-0.6 r | 17700
4 g |2/15 Jj | -U/15 s | 11/6300
c | -6 h | -0.1 K | 1/20 q | -1/1400

These numbers obviously remain unchanged as the size of the beam varies, but do change when the
geometry or the shape of the beam changes. The variation in above coefficients with changes in beam

geometry forms the basis for a sensitivity analysis which shall be briefly discussed later in this chapter.

3.3 Observations and Comments on the Simplified Results

There are many interesting observations that may be drawn from the above derivations, also several

comments that can be made on these derivations.

1. We see that the transverse stiffness terms are approximately a linear function of the axial force.
Although it is intuitively known that the transverse stiffness of a beam increases with a tensile axial
load and decreases with a compressive axial load, the actual dependence is stated here in a
quantitative form. The non-linearity in force displacement relationships arises due to the fact that

displacements are included in force equilibrium. It is common to refer to two kinds of stiffness, the
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elastic stiffness matrix and the geometric stiffness matrix, clearly distinguished in expression (3.17).
Apart from playing an important role in the analysis of more complex mechanisms, these expressions
may be used to quickly and symbolically obtain results that would otherwise involve tedious analysis.
For example, in the presence of an axial load p, one can easily derive the ratio between m and f; that is

needed to maintain a zero end slope, to be

m__1(I+%p)
f 2(1+4p)
Similarly, the non-linear Duffing effect in a clamped-clamped beam, transversely loaded in the

middle, can be obtained in a few steps to be,

f=(a—ide5y2)§y (3.19)

Despite being based on several assumptions, these approximate results are accurate to within 5
percent of the real behavior of an ideal beam. This may be validated using known cases of beam
buckling. One way of defining buckling is — the limit of compressive axial force when transverse

stiffness becomes zero. For a fixed-free beam, applying the boundary condition of m=0 in equation

(3.14), one obtains &, 1 f = Pp.,=-2.5. From the classical linear beam buckling
3(1+2p)

" . 7’ EI

analysis, the critical buckling load for a fixed free beam is known to be P, =~

= Do = -—%2- =-2.4674 , which is about 1.3% off from the value predicted using the approximate
results. Similarly, one may consider the buckling of a beam that is fixed on one end, and is
constrained to have a zero slope on the other end. This time we can make use of equation (3.15) to
predict that the transverse stiffness of the beam will drop to zero for a compressive load of p=10,
which is also 1.3% off from the value 77, derived from linear beam buckling. For obvious reasons,
these results may not be used for predicting the buckling of pinned-pinned or clamped-clamped

beams.

While the analysis in Section 3.2 assumed that the loads in the deformed configuration stay aligned
with the undeformed reference axes of the flexure beam, other situations are easily addressed using
the results of the above derivation. Consider, for example, the loading situation of Fig. 3.8, where the

loads translate and rotate with the beam tip.
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Fig 3.8 End loading that maintains the orientation of beam tip

Since frepresents rotation of beam tip and is not a spatial variable, this loading condition offers no
significant problems, other than some added mathematical complexity. The tip loads expressed along

the XY axes may be stated as,

" =fcos@+psinf= f(1-L6%)+ po
p =pcos@- fsinf=p(I-16°)- f6

Substituting these in equations (3.14) and (3.15) yields interesting force displacement relationships.

For the particular case of p=0 and m=0, it can be shown in a few steps that

0 _J f-4f
i 2 M 4o p
3 5

As expected, the transverse stiffness reduces as a consequence of this loading condition.

While the variation of transverse stiffness due to axial loads is very clear from equation (3.17), the
change in axial stiffness due to the presence of a transverse displacement is quantified in equation
(3.18). It may be seen that the kinematic component defined earlier may be further separated into a

purely kinematic component, and an ‘elastokinematic’ component.

s=2p &[4 6'][,2 ﬂm o =rl4 BJB q}m

The first term above represents a purely elastic component that results from stretching of the beam.
The second term is a purely kinematic component, and is a consequence of the constant beam arc
length requirement. The third term is the most interesting of three because it has both an elastic as
well as a kinematic aspect. Although this term is also a consequence of the constant beam arc length

requirement, it essentially captures the effect of the change in the beam’s deformed shape due to the
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contribution of the axial force to the bending moments. The first and the third components contribute
to the compliance in the X-direction, while the second component is independent of the axial force.
The importance of the third term is due to its non-linear contribution to the axial compliance, which
has a quadratic dependence on the transverse displacements. As has been mentioned earlier, the axial
stiffness of a beam flexure determines the quality of its DOC, which in turn influences static as well

as dynamic performance measures in a flexure mechanism.

Furthermore, a generalization of the above analysis for a uniform beam may be made by considering

a different beam shape, for example, the common double notch flexure in Fig. 3.9.

A B A

o o) o

Fig. 3.9 Double Notch Flexure

The overall length of the beam is still L and is used as the characteristic length of the system. The two
notches are A, each, and the length of the rigid connector is B,. Analysis analogous to that of Section
3.2 can be carried out, although this involves a bit more mathematical complexity. In general, the
structure of resulting expressions remains the same, while the non-dimensional coefficients vary. The

transverse force displacement relationships in the absence of the axial load p are given by

[5y:|_ (%a03—a02+a0) a, |:f:|
0 a, 2a, |LM
12 —6

3 3
{15 1-b, s,
m -6 4+b,+b° | 6

1-b’  1-b)

These relations reduce to (3.14) and (3.15), if b, is set to 0 or q, is set to 0.5, and p=0. Obviously, if

a, is made very small, Bernoulli’s assumptions will start to fail, and a more accurate analysis will be
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needed. Nevertheless, these results provide us with an idea of how the non-dimensional coefficients
vary with changing geometry. As is expected, increasing the ratio b, will increase the transverse
stiffness since this reduces the a, segments that provide compliance. For small values of b, the

stiffness matrix above can be approximated by

[f]=[12(1+3b,,) —